Hierarchical Classification of Sea-Floor Imagery
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1. Background

Supervised classification on data sets with hierarchical
labels raises a number of challenges not present in binary
or flat multi-class classification problems. An example of
this type of problem is in scientific imaging of the sea-floor.
To study ecosystems and populations, marine scientists re-
quire quantitative data on bottom-dwelling organisms and
physical morphology. The state of the art is to take a selec-
tion of images, manually label the content, and extrapolate
to assess distribution and coverage over wider geographical
areas.

The image content is labelled in a hierarchical man-
ner; a standardised tree structure for biological and phys-
ical classes was recently defined in the Catami project [2].
Typically 50 randomly located keypoints in an image will
be labelled, and the class assigned may be at a higher level
(such as “unspecified biology”), all the way to leaf node
classification of particular species.

Recent work on a simplified attempt at automated la-
belling is described in [1]. The data set was from an Au-
tonomous Underwater Vehicle (AUV) campaign in Tasma-
nia (Australia) in 2008. The manual labelling effort resulted
in 62,900 hand labelled points from 1,258 geographically
dispersed images (with many more images remaining unla-
beled). We use the same data set in this study, but extend
the problem from single species classification (Kelp) to a
hierarchy of up to four layers with 19 species and phys-
ical morphologies (using the Catami hierarchy, including
classes such as coral, sponges, soft-physical, algae, and oth-
ers). Due to the way the data was labelled (many keypoints
were not identified to the deepest valid node), it was not
possible to apply one-vs-all flat multi-class classification to
the whole problem. Discriminating a node from its ancestor
classes is not valid in this case, as the ancestors are likely to
include data that truly belongs to a leaf node. This type of
data can occur for a number of reasons: Limited expertise
of the labeller, the specific scientific interest of the group
funding the labelling, or even the ability to identify specific

species from the local visual information available in the
image.

Further, the nature of the data requires supervised learn-
ing, in order to meet the scientists’ needs. Regardless
of whether the semantic hierarchy is the most optimal for
learning, or the most cleanly separated based on visual data,
we need to speak the same language as the marine scientists,
to ensure the output is directly useful for them. As we are
required to conform to a pre-defined hierarchy, techniques
constructing hierarchies in an purely unsupervised manner
are not appropriate.

2. Method

Work on this type of supervised hierarchical classifica-
tion problem was reviewed extensively in [5]. They defined
a number of approaches; we chose to test the approach they
describe as “by far the most used in the literature”, called
Local Classifier per Node. Each node in the classification
tree has a binary classifier that is trained to distinguish that
class from others. An important decision is the definition of
positive and negative training examples for each node. We
compare the two policies described in [5] that most natu-
rally fit our problem: The inclusive policy includes the en-
tire subtree of the training node as positive examples, with
nodes in the rest of the tree (with the exception of direct
ancestors of the training node) as negative examples. This
policy represents the most data that can be validly used for
training a given node’s classifier. The alternative sibling
policy uses the same positive training examples, however
the negative examples are restricted to siblings of the train-
ing node (and not siblings of the ancestor nodes). The ex-
pected performance difference between these two policies
is not obvious, with no clear winner found in [3]. On one
hand, the inclusive policy ensures that each node is as in-
formed as possible, and should be able to deal better with
classifying instances that belong elsewhere in the tree. On
the other hand, the siblings policy solves a much more spe-
cific problem (distinguishing a node’s class from its sib-



lings), and may give better discriminative performance be-
tween these classes. Such nodes will, however, be less in-
formed about instances that belong elsewhere in the tree.
An inherent advantage of the latter approach is that far less
training data is required for nodes deeper in the tree, which
becomes significant when the tree is large.

A subtlety of the siblings vs. inclusive approaches is in
the selection of image features. In flat multi-class classifica-
tion, the same image features are typically used for all clas-
sifiers. With the hierarchical class structure, we can select
(either manually, or by feature learning techniques) features
that are optimised for the siblings or inclusive training data
sets.

After deciding on the classifier structure and training
data sets, we must still choose a technique for predicting
instance classes. If we require complete consistency in the
hierarchical labels (such that there is a single, unbroken
chain of classifiers predicting positive results from the root
to the deepest node), the simplest choice described in [5] is
what we refer to as max probability switching (MPS). An
instance starts at the root node, and flows to the child node
with the highest prediction probability (akin to performing
one-vs-rest classification at each node). This technique im-
plies prediction down to the leaf node level. We can remove
this constraint by stopping an instance from moving fur-
ther down the tree when the maximum predicted probability
falls below some threshold (say 0.5 for even weighting). We
also test an alternative approach - the use of a simple prob-
abilistic graphical model (PGM), where the class tree also
represents the independence relations in the PGM, and we
assume the conditional probability of node membership is
given by the probabilistic predictions of the classifiers. This
allows exact inference to be trivially performed, by multi-
plying probabilities of a leaf node’s ancestors to obtain the
probability of membership.

Lastly, a robust performance metric is needed; ideally
a single number to evaluate the performance on an entire
tree. The closest commonly used in the literature is the hi-
erarchical fl-score [4]. Each instance has multiple counts
of true/false positives/negatives, as each node in the chain
of true class nodes is compared to the chain of predicted
nodes. We modify this metric such that if the predicted class
is more specific (lower down the tree) than the true class, we
do not apply false positive penalties. Given the manner in
which the data was labelled, it would be unfair to reward or
penalise any results deeper than the deepest known class.

We present results using logistic regression (LR) clas-
sifiers, with features derived using PCA and Local Binary
Patterns (LBP) on the Tasmania 2008 data set. Performance
is measured in terms of the modified hierarchical f1-score
with the same training and validation sets described in [1].

Comparing the 'Siblings' and ‘Inclusive’ policies with modified hierarchical f1-score
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Figure 1. Comparison of Siblings and Inclusive Policies (on mod-
ified hierarchical f1-score). Each marker represents both local and
global performance on a given feature and prediction setup.

3. Results and Discussion

We compare the sibling and inclusive policies on a range
of image descriptors. In Figure 1, performance using the
modified hierarchical f1-score is compared for the two poli-
cies, across a range of image descriptors and prediction ap-
proaches. PCA uses 60 components on each of 7, 15, 31,
63 and 95 pixel square RGB image patches. LBP uses a
variety of colour space transforms and LBP types (uniform,
rotation invariant, fourier) on a 31 pixel patch.

There is a clear trend that for mandatory leaf node pre-
diction, the PGM 1is generally superior to MPS. This is
promising for future work, as the PGM is the more princi-
pled approach, and more sophisticated models can be used.
Also, the modification to permit the network to predict only
higher level classes when less confident (thresholding) was
highly successful.

In terms of inclusive and sibling policies, we obtain the
same finding on underwater images as that found using text
classification [3] — no clear winner. Given sibling has a sig-
nificant advantage in reducing training time, it is preferred
in situations where the results are comparable.

With these results, future work with PGMs with vari-
able tree-depth prediction would be valuable. Also, it may
be possible to further boost the performance of the sibling
relative to the inclusive policy with the use of more sophis-
ticated local classifier optimisations.
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